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Abstract

Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to
study, characterize, and ultimately understand the two major components of the ‘Dark Universe’, dark energy and
dark matter. In addition, they also probe primordial perturbations and carry out fundamental measurements, such as
determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical
role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to
grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hard-
ware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework,
designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can
run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has
been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene
systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance
on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying
algorithms and code structure, and outline implementation details for several specific architectures. We show selected
accuracy and performance results from some of the largest high resolution cosmological simulations so far performed,
including benchmarks evolving more than 3.6 trillion particles.
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1. Introduction

1.1. Sky Surveys and Computational Cosmology

An unprecedented volume of observational data and
information regarding the distribution and properties
of optical sources in the Universe is becoming avail-
able from ongoing and future sky surveys, both imag-
ing and spectroscopic. These include BOSS (Baryon
Oscillation Spectroscopic Survey; Dawson et al. 2013),
DES1 (Dark Energy Survey; Abbott et al. 2005), KiDS

1http://www.darkenergysurvey.org/

(Kilo-Degree Survey; de Jong et al. 2012), SUMIRE2,
DESI3 (Dark Energy Spectroscopic Instrument; Levi et
al. 2013), 4MOST (4-meter Multi-Object Spectroscopic
Telescope; de Jong et al. 2012), J-PAS (Javalambre-
Physics of the Accelerated Universe Astrophysical Sur-
vey; Benitez et al. 2014), LSST4 (Large Synoptic Sur-
vey Telescope; Abell et al. 2009), Euclid (Amendola
et al., 2012), and WFIRST (Wide-Field InfraRed Sur-

2http://sumire.ipmu.jp/en/
3http://desi.lbl.gov/
4http://www.lsst.org/lsst/
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vey Telescope; Spergel et al. 2013). Combined with
microwave background observations from the Planck
satellite5 and ground-based telescopes, such as ACT6

(Atacama Cosmology Telescope) and SPT7 (South Pole
Telescope), the mining of these and other datasets, such
as resulting from new radio surveys, e.g., VLASS (Very
Large Array Sky Survey)8 and X-ray surveys, are ex-
pected to yield a host of cosmological and astrophysical
insights.

There are several foundational cosmological ques-
tions that the data will directly address. Perhaps the
most pressing is the mysterious cause of the accelerated
expansion of the Universe – whether it is due to dark en-
ergy or a modification of general relativity. In addition,
the observations will also bear on the ultimate nature of
dark matter, provide information on the physics of the
early Universe by probing primordial fluctuations, and
enhance our knowledge of the neutrino family, the light-
est known massive particles in the Universe. Aside from
these basic cosmological questions, the data provide an
enormous resource for attacking a very large number of
astrophysical problems related primarily to understand-
ing the formation of structure in the Universe.

In order to extract the full extent of information from
these remarkable surveys, a similar level of effort must
be undertaken in the realm of theory and modeling. To
attain the necessary realism and accuracy, sophisticated,
large scale simulations of structure formation must be
carried out. These simulations address a large vari-
ety of tasks: providing predictions for many different
cosmological models to solve the inverse problem re-
lated to determining cosmological parameters, investi-
gating astrophysical and observational systematics that
could mimic physics effects of the dark sector, enabling
careful calibration of errors (by providing precision co-
variance estimates), testing, optimizing, and validating
observational strategies with synthetic catalogs, and fi-
nally, exploring new and exciting ideas that could either
explain puzzling aspects of the observations (such as
cosmic acceleration) or help to motivate and design the
implementation of new types of cosmological probes.

The simulations have to be large enough in volume
to cover the observed Universe (or at least a large part
of it) and at the same time possess sufficient mass and
force resolution (a spatial dynamic range of roughly a
million) to resolve objects down to the smallest rele-

5http://www.rssd.esa.int/index.php?project=Planck
6http://www.princeton.edu/act/
7http://pole.uchicago.edu/
8https://science.nrao.edu/science/surveys/vlass/vlass-white-
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Figure 1: Areal density of emission line galaxies from synthetic cat-
alogs produced for the DESI experiment (White et al. 2014). These
catalogs are based on results from a high resolution, trillion particle
HACC simulation performed on the Mira supercomputer. They are
being used to test fiber assignment algorithms and to optimize DESI’s
footprint and survey strategy.

vant scales. As an example, synthetic galaxy and quasar
catalogs for DESI were recently constructed based on a
trillion-particle HACC simulation, covering a ∼ 4 Gpc
box (White et al. 2014, Figure 1).

The diverse uses of simulations outlined above also
demand fast turn-around times, as not one such simula-
tion is required but, eventually, many hundreds to thou-
sands. The simulation codes, therefore, have to be capa-
ble of exploiting the largest supercomputing platforms
available today and into the future.

1.2. Challenge of Future Supercomputing Architectures

Viewed as a single entity, the field of computational
cosmology has largely kept pace with the growth of
computational power, but new challenges will need to
be faced over the next few years. This is due to the
failure of Dennard scaling (Dennard et al. 1974), which
underlay the success of Moore’s Law for about two
decades. As a consequence of the fact that single-core
clock rate and performance have stalled since 2004/5,
the design of future microprocessors is branching into
several new directions, to overcome the related perfor-
mance bottlenecks (Borkar & Chien 2011) – the key
constraint being set by electrical power requirements.
The resulting impact on large supercomputers is already
being seen; aside from the familiar large multi-core
processor clusters, two major approaches can be easily
identified.
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The first approach is the large homogeneous sys-
tem, built around a ‘system on chip’ (SoC) design
or around many-core nodes, with concurrencies in the
multi-million range – the IBM Blue Gene/Q is an ex-
cellent example of such an approach; specific exam-
ples include Sequoia (20 PFlops peak) at Lawrence
Livermore National Laboratory and Mira (10 PFlops
peak) at Argonne National Laboratory, supporting up
to 6.3 million-way concurrency (Sequoia; half of that
on Mira). The second route is to take a conventional
cluster but to attach computational accelerators to the
CPU nodes. The accelerators can range from the IBM
Cell processor (as on Los Alamos National Labora-
tory’s Roadrunner, first to break the Petaflop barrier),
to GPUs as on Titan (27 PFlops peak) at Oak Ridge Na-
tional Laboratory, to the Intel Xeon Phi coprocessor as
on Stampede (10 PFlops peak) at the Texas Advanced
Computing Center. Future evolution of supercomputer
systems will almost certainly involve further branching
in the space of possible architectures.

Because development of the supercomputing soft-
ware environment is likely to lag significantly behind
the pace of hardware evolution, it appears prudent, if
not essential, to develop a code design philosophy and
implementation plan for cosmological simulations that
can be reconfigured relatively quickly for new architec-
tures, has support for multiple programming paradigms,
and at the same time, can extract high levels of sustained
performance. With this challenge in mind, we have de-
signed HACC (Hardware/Hybrid Accelerated Cosmol-
ogy Codes), an N-body cosmology code framework that
takes full advantage of all available architectures. This
paper presents an overview of HACC ‘theory and prac-
tice’ by covering the methods employed, as well as de-
scribing important components of the implementation
strategy. An example of HACC’s capabilities is shown
in Figure 2, a recent large cosmological run on Mira,
evolving more than 1 trillion particles.

1.3. HACC Design Motivations and Implementation

Cosmological simulations can be broadly divided
into two classes: gravity-only N-body simulations and
‘hydrodynamic’ simulations that incorporate gasdy-
namics and model feedback mechanisms, as well as
other baryonic processes. Since gravity dominates at
large scales, and dark matter outweighs baryons by
roughly a factor of five, N-body simulations are an es-
sential component in modeling the formation of struc-
ture. Several post-processing strategies can be used
to incorporate missing physics, such as the halo oc-
cupation distribution (HOD) approach, Subhalo/Halo
Abundance Matching (S/HAM) (Vale & Ostriker 2004;

Figure 2: Zoom-in visualization of the density field in a 1.07 tril-
lion particle, 4.225 Gpc box-size simulation with HACC on 32 Blue
Gene/Q racks. The force resolution is 6 kpc and the particle mass,
mp ∼ 2.6 · 109 M". The image, taken during a late stage of the
evolution, illustrates the global spatial dynamic range covered by the
simulation, ∼ 106, although the finer details are not resolved in this
visualization.

Conroy et al. 2006; Wetzel & White 2010; Moster et
al. 2010; Guo et al. 2010) or semi-analytic modeling
(SAM) (White & Frenk 1991; Kauffmann et al. 1993;
Cole et al. 1994; Somerville & Primack 199; Benson et
al. 2003; Baugh 2006; Benson 2010) for adding galax-
ies to the simulations. Whenever a more detailed under-
standing of the dynamics of baryons is required, gas-
dynamic, thermal, and radiative processes (among oth-
ers) must be modeled, as well as processes such as star
formation and local feedback mechanisms (outflows,
AGN/Sn feedback). A compact review of cosmological
simulation techniques and applications can be found in
Dolag et al. (2008). A compact review of phenomeno-
logical galaxy modeling is given in Baugh (2013).

Carrying out a fully realistic first principles simula-
tion program for all aspects of modeling cosmological
surveys will not be possible for quite some time. The re-
quired gasdynamic simulations are very expensive and
there is considerable uncertainty in the modeling and
physics inputs. Progress is nevertheless possible by
combining high-resolution, large-volume N-body simu-
lations and post-processing inputs from simulations that
include gas physics to build robust phenomenological
models. The parameters of these models would be de-
termined by a set of observational constraints; yet other
observations would then function as validation tests.
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The HACC approach assumes this starting point as an
initial design constraint, but one that can be relaxed in
the future.

The overall structure of HACC is based on the real-
ization that a large-scale computational framework must
not only meet the challenges of spatial dynamic range,
mass resolution, accuracy, and throughput, but, as al-
ready discussed, be cognizant of disruptive changes in
computational architectures. As an early validation of
its design philosophy, HACC was among the pioneer-
ing applications proven on the heterogeneous architec-
ture of Roadrunner (Habib et al. 2009; Pope et al. 2010),
the first computer to break the petaflop barrier. With
its multi-algorithmic structure, HACC allows the cou-
pling of MPI with a variety of local programming mod-
els – MPI+‘X’ – to readily adapt to different platforms.
Currently, HACC is implemented on conventional and
Cell/GPU-accelerated clusters, on the Blue Gene/Q ar-
chitecture (Habib et al. 2012), and has been run on pro-
totype Intel Xeon Phi hardware. HACC is the first,
and currently the only large-scale cosmology code suite
world-wide, that has been demonstrated to run at full
scale on all available supercomputer architectures.

Another key aspect of the HACC code suite is an in-
built capability for fast “on the fly” or in situ data anal-
ysis. Because the raw data from each run can easily
be at the petabyte (PB) scale or larger, it is essential
that data compression and data analysis be maximized
to the extent possible, before the code output is dumped
to the file system. In order to comply with storage and
data transfer bandwidth limitations, the data reduction
required is roughly by a factor of two orders of magni-
tude. HACC’s in situ data analysis system is designed to
incorporate a number of parallel tools such as tools for
generating clustering statistics (power spectra, correla-
tion functions), tessellation-based density estimators, a
fast halo finder (Woodring et al., 2011) with an associ-
ated merger tree capability, real-time visualization, etc.

The HACC framework has been used to generate a
number of large simulations to carry out a variety of
scientific projects. These include a suite of 64 billion
particle runs for predicting the baryon acoustic oscil-
lation signal in the quasar Ly-α forest, as observed by
BOSS (White et al. 2010), a high-statistics study of
galaxy group and cluster profiles, to better establish
the halo concentration-mass relation (Bhattacharya et
al. 2011), tests of a new matter power spectrum emu-
lator (Heitmann et al. 2014), and a study of the effect of
neutrino mass and dynamical dark energy on the mat-
ter power spectrum (Upadhye et al. 2013). Results from
other simulation runs will be available shortly. These
range from simulation campaigns in the ∼ 70 billion

particle range per simulation, e.g., simulations for de-
termining sampling covariance for BOSS (Sunayama et
al. 2014), to individual simulations in the ∼ 500 − 1000
billion particle class. As an example of the latter, a re-
cently completed simulation on Titan used 550 billion
particles to evolve a 1.3 Gpc periodic box, with mass
resolution, mp = 1.48 · 108 M", and force smoothing
scale of ∼ 3.2 kpc.

The paper is organized as follows. In Section 2 we in-
troduce the basic HACC design and algorithms, focus-
ing on how portability and scaling on very large super-
computers is achieved, including discussions of prac-
tical matters such as memory management and paral-
lel I/O. A significant aspect of supercomputer archi-
tecture is diversity at the level of the computational
nodes. As mentioned above, the HACC design adopts
different short-range solvers for different nodal archi-
tectures, and this feature is discussed separately in Sec-
tion 3. Section 4 presents some results from our exten-
sive code verification program, showcasing a compari-
son test with GADGET-2 (Springel, 2005), one of the
most widely used cosmology codes today. The in situ

analysis tool suite is covered in Section 5, and selected
performance results are given in Section 6. We conclude
in Section 7 with a recap and a discussion of future evo-
lution paths for HACC.

2. General Features of the HACC Code Framework

2.1. N-body Algorithms

In the standard model of cosmology, structure for-
mation at large scales is described by the gravitational
Vlasov-Poisson equation (Peebles 1980), a 6-D partial
differential equation for the Liouville flow (1) of the
one-particle phase space distribution, arising from the
non-relativistic limit of the Vlasov-Einstein set of equa-
tions,

∂t f (x, p) + ẋ · ∂x f (x, p) − ∇φ · ∂p f (x, p) = 0, (1)

where the Poisson equation encodes the self-
consistency of the evolution:

∇2φ(x) = 4πGa2(t)Ωmδm(x)ρc. (2)

The expansion history of the Universe is given by the
time-dependence of the scale factor a(t) governed by the
specifics of the cosmological model, the Hubble param-
eter, H = ȧ/a, G is Newton’s constant, ρc is the critical
density, Ωm, the average mass density as a fraction of
ρc, ρm(x) is the local mass density, and δm(x) is the di-
mensionless density contrast,

ρc = 3H2/8πG, δm(x) = (ρm(x) − 〈ρm〉)/〈ρm〉, (3)
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p = a2(t)ẋ, ρm(x) = a(t)−3m

∫

d3p f (x, p). (4)

The Vlasov-Poisson equation is computationally very
difficult to solve as a partial differential equation be-
cause of its high dimensionality and the development of
nonlinear structure – including complex multistreaming
– on ever finer scales, driven by the gravitational Jeans
instability. Consequently, N-body methods, using tracer
particles to sample f (x, p) are used; the particles follow
Newton’s equations, with the forces given by the gradi-
ent of the scalar potential φ(x) (Cf. Braun & Hepp 1977,
for an early comparison of direct and particle methods,
see Denavit & Kruer 1971).

The cosmological N-body problem is characterized
by a very large value of the number of interacting par-
ticles. If one wishes to track billions of galaxy-hosting
halos at a reasonable mass resolution, then hundreds of
billions to trillions of tracer particles are required. Since
gravity cannot be shielded, this obviously precludes the
use of brute-force direct particle-particle algorithms for
the particle force computation. Popular alternatives in-
clude pure particle-based methods (tree codes) or multi-
scale grid-based methods (AMR codes), or hybrids of
the two (TreePM, P3M). It is not our purpose here to go
into the basic details of the algorithms and their imple-
mentations; good coverage of the background material
can be found in Barnes & Hut (1986), Hockney & East-
wood (1988), Pfalzner & Gibbon (1996), Dubinski et al.
(2004), Springel (2005), and Dolag et al. (2008).

The HACC design approach acknowledges that, as
a general rule, particle and grid-based methods both
have their limitations. For physics, algorithmic, and
data structure reasons, grid-based techniques are bet-
ter suited to larger (‘smooth’) lengthscales, with par-
ticle methods possessing the opposite property. This
suggests that higher levels of code organization should
be grid-based, interacting with particle information at a
lower level of the computational hierarchy.

Following this central idea, HACC uses a hybrid
parallel algorithmic structure, splitting the gravita-
tional force calculation into a specially designed grid-
based long/medium range spectral particle-mesh (PM)
component that is retained on all computational ar-
chitectures, and an architecture-tunable particle-based
short/close-range solver. The spectral PM component
can be viewed as an upper layer that is implemented us-
ing C++/C/MPI, essentially independent of the target
architecture, whereas, the bottom or node level is where
the short/close-range solvers reside. These are chosen
and optimized depending on the target architecture and
use different local programming models as appropriate.
Of the 6 orders of magnitude required for the spatial dy-

namic range for the force solver, the grid is responsible
for 4 orders of magnitude, while the particle methods
handle the critical 2 orders of magnitude at the shortest
scales where particle clustering is maximal and the bulk
of the time-stepping computation takes place.

The short-range solvers can employ direct particle-
particle interactions, i.e., a P3M algorithm (Hockney &
Eastwood, 1988), as on some accelerated systems, or
use both tree and particle-particle methods as on the
IBM Blue Gene/Q (‘PPTreePM’ with a recursive coor-
dinate bisection (RCB) tree). As two extreme cases, in
non-accelerated systems, the tree solver provides very
good performance but has some complexity in the data
structure, whereas for accelerated systems, the local N2

approach is more compute-intensive but has a very sim-
ple data structure, better-suited for computational ac-
celerators such as Cells and GPUs. The availability of
multiple algorithms within the HACC framework also
allows us to carry out careful error analyses, for exam-
ple, the P3M and the PPTreePM versions agree to within
0.1% for the nonlinear power spectrum test in the code
comparison suite of Heitmann et al. (2005) (see Sec-
tion 4 for more details).

In the following we first describe the long/medium-
range force solver employed by HACC. As mentioned
above, this solver remains unchanged across all archi-
tectures. After doing this, we provide details of the
architecture-specific short-range solvers, and the sub-
cycled time-stepping scheme used by the code suite.

2.2. Particle Overloading

An important aspect of large-volume cosmological
simulations is that the density distribution is very highly
clustered, with an overall topology descriptively re-
ferred to as the “cosmic web”. The clustering is such
that the maximum distance moved by a particle is
roughly 30 Mpc, very much smaller than the overall
scale of the simulation box (∼Gpc). With a 3-D domain
decomposition, each (non-cubic) nodal volume (MPI
rank) is roughly of linear size 50-500 Mpc, depend-
ing on the simulation run size. The idea behind parti-
cle overloading is to ‘overload’ the node with particles
belonging also to a zone of size roughly 3-10 Mpc ex-
tending out from the nominal spatial boundary for that
node (so-called “passive” particles). Note that copies of
these particles – essentially a replicated particle cache,
roughly analogous to ghost zones in PDE solvers – will
also be held by other processors, in only one of which
will they be “active”, hence the use of the term ‘over-
loading’. Because more than one copy of these particles
is held by neighboring domains, overloading is not the
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same as the guard zone conventionally used to reduce
communication in particle codes.

The point of having this particle cache is two-fold.
First, for a number of time steps no particle communica-
tion across nodes is required. Additionally, the cached
particle ‘skin’ allows particle deposition and force in-
terpolation for the spectral particle-mesh method to be
done using information entirely local to a node, thus
grid communication is also reduced. The particle cache
is refreshed (replacement of passive particles in each
computational domain by active particles from neigh-
boring domains) at some given number of time steps.
This involves only nearest neighbor communication and
the penalty is a trivial fraction of the time spent in a
single global time step. The second advantage of over-
loading is that when a short-range solver is added to
each computational domain, no communication infras-
tructure is associated with this step. Thus, in principle,
short-range solvers can be developed completely inde-
pendently at the node level, and then inserted into the
code as desired. Consequently, HACC’s weak scaling
is purely a function of the properties of the long-range
solver.

The overloaded PM solver is formally exact – each
node sends its local density field (computed with ac-
tive particles only) to the global spectral Poisson solver,
which then returns the force for both active and passive
particles to each node. The short-range force calculation
for passive particles is computed in the same way as for
the active particles, except that passive particles, which
are closer to the outer domain boundary than the short-
range force-matching scale, rs (defined in the following
Section), do not have their short-range forces computed,
and are subject to only long-range forces. This avoids
force anisotropy near the overloaded zone boundary, at
the expense of a force error on the passive particles that
are close to the edge of the boundary. Since the role
of the passive particles is primarily to provide a buffer
‘boundary condition’ zone for the active particles near
the nodal domain’s active zone boundary, consequences
of this error are easy to control.

Overloading has two associated costs: (i) loss of
memory efficiency because of the overloading zone,
and (ii) the just-discussed numerical error for the short-
range force that slowly leaks in from the edge of the
outer (passive particle) domain boundary. In cosmology
applications, the memory inefficiency can be tolerated
to the point where the memory in passive and active par-
ticles is roughly equal, but this is not a limitation in the
majority of the cases of interest. The second problem
is easily mitigated by balancing the boundary thickness
against the frequency of the particle cache refresh, “re-

cycling” the passive particles after some finite number
of time-steps, chosen to be such that the refresh time is
smaller than the error diffusion time: each domain gets
rid of all of its passive particles and then refreshes the
passive zone with (high accuracy) active particles ex-
changed from nearest-neighbor domains.

2.3. The Long-Range Force

Conventional particle-based codes employ a combi-
nation of spatial and spectral techniques. The Cloud-
in-Cell (CIC) scheme used for particle deposition is an
example of a real space operation, whereas the Fast
Fourier Transform (FFT)-based Poisson solver is a k-
space or spectral operation. The spatial operations in
a typical particle code are the particle deposition, the
force interpolation, and the finite-differences for com-
puting field derivatives. The spectral operations in-
clude the influence (or pseudo-Green) function FFT
solve, digital filtering, and spectral differentiation tech-
niques. Spatial techniques are often less flexible and
more tedious to implement than their spectral counter-
parts. Also, higher-order spatial operations can be com-
plicated and lead to messy and dense communication
patterns (e.g., indirection).

Accurate P3M codes are usually run with Triangle-
Shaped-Cloud (TSC), a high-order spatial deposi-
tion/filtering scheme, as well as with high-order spa-
tial differencing templates. In terms of grid units, the
CIC deposition kernel filters roughly at the level of two
grid cells with a large amount of associated “anisotropy
noise”; TSC filters at about three grid cells with much
reduced noise. The resulting long-range/short-range
force matching is usually done at four/five grid cells or
so (but can be as small as three grid cells). TreePM
codes can move the matching point to a larger number
of grid cells because of the inherent speed of the tree
algorithm, so they can continue to use CIC deposition
(with some additional Gaussian filtering). HACC al-
lows the use of both P3M and TreePM algorithms, using
a shorter matching scale than most TreePM codes. One
advantage of the shorter matching scale is that a polyno-
mial expression can be used in the force representation,
which greatly speeds up evaluation of the force kernel.

The HACC long-range force solver uses only CIC
deposition/interpolation with a Gauss-sinc spectral fil-
ter to mimic TSC-like behavior. In addition, a fourth-
order Super-Lanczos spectral differentiator (Hamming
1998) is used, along with a sixth-order influence func-
tion. This approach allows the data motion to be simpli-
fied as no complicated spatial differentiation is needed.
Also, by moving more of the Poisson-solve to the spec-
tral domain, the inherent flexibility of Fourier space can
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Figure 3: Orientation-averaged force between two particles as a func-
tion of separation, using digital filtering and spectral differentiation
with CIC deposition as implemented in HACC. The match to the ex-
act 1/r2 behavior is tuned to occur at a separation of three grid cells,
which sets the force-matching scale, rs. The low level of the force
anisotropy noise is shown by the bracketing red lines representing the
1-σ deviation. The solid curve is the fitting formula of Eq. 8.

be used. For example, the filtering is flexible and tun-
able, allowing careful force matching at only three grid
cells. Figure 3 shows the force-matching with the spec-
tral techniques using a pair of test particles. In this test,
multiple realizations of particle pairs were taken at fixed
distances, but with random orientations of the separa-
tion vector in order to sample the anisotropy imposed
by the grid-based calculation of the force.

The solution of the Poisson equation in HACC’s
long range force-solver is carried out using large FFTs;
the corresponding spectral representation of the inverse
(discrete) Laplacian is the influence function. HACC
employs the following three-dimensional, sixth-order,
periodic, influence function:
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where the sum is over the three spatial dimensions, ∆ is
the grid spacing, and L the physical box size.

As mentioned earlier, the CIC-deposited density field

is spectrally filtered using a sinc-Gaussian filter:

S (k) = exp (− |k|2 σ2/4) [(2/k∆) sin(k∆/2)]ns . (6)

The aim of the filter is to reduce the anisotropy noise
as well as control the matching scale where the short-
range and long-range forces are matched; the nominal
choices in HACC are σ = 0.8 and ns = 3. This filtering
reduces the anisotropy “noise” of the basic CIC scheme
by better than an order of magnitude, and allows for the
use of the higher-order spectral differencing scheme.

Instead of solving for the scalar potential, and then
using a spatial stencil-based differentiation, HACC uses
spectral differentiation within the Poisson-solve itself,
using fourth-order spectral Lanczos derivatives, as pre-
viously mentioned. The (one-dimensional) fourth-order
Super-Lanczos spectral differentiation for a function, f ,
given at a discrete set of points is
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where C j are coefficients in the Fourier expansion of f .

The “Poisson-solve” in the HACC code is the com-
position of all the kernels above in one single Fourier
transform. Note that each component of the field gradi-
ent requires an independent FFT. This entails some extra
work, but is a very small fraction of the total force com-
putation, the bulk of which is dominated by the short-
range solver.

An efficient and scalable parallel FFT is an essential
component of HACC’s design, and determines its weak
scaling properties. Although parallel FFT libraries are
available, HACC uses its own portable parallel FFT
implementation optimized for low memory overhead
and high performance. Since slab-decomposed parallel
FFTs are not scalable beyond a certain point (restricted
to Nrank < NFFT ), the HACC FFT implementation uses
data partitioning across a two-dimensional subgrid, al-
lowing Nrank < N2

FFT , where Nrank is the number of MPI
ranks and NFFT is the linear size of the 3-D array. The
resulting scalable performance is sufficient for use in
any supercomputer in the foreseeable future (Habib et
al. 2012).

The implementation consists of a data partitioning al-
gorithm which allows an FFT to be taken in each di-
mension separately. The data structure of the computing
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Figure 4: Data allocations for the force calculation. A three-
dimensional spatial domain decomposition is used for for the force-
solver, while a two-dimensional pencil structure is used for the FFT.
Therefore, a reallocation of memory between the two data structures
is required when carrying out either step in the computation.

nodes prior to the FFT is such as to divide the total space
into regular three-dimensional domains. Therefore, to
employ a two-dimensionally decomposed FFT, the dis-
tribution code reallocates the data from small ‘cubes’,
where each cube represents the data of one MPI rank,
to thin two-dimensional ‘pencil’ shapes, as depicted
schematically in Figure 4.

Once the distribution code has formed the pencil data
decomposition, a one-dimensional FFT can be taken
along the long dimension of the pencil. Moreover, the
same distribution algorithm is employed to carry out
the remaining two transforms by redistributing the do-
main into pencils along those respective dimensions.
The transposition and FFT steps are overlapped and
pipelined, with a reduction in communication hotspots
in the interconnect. Lastly, the dataset is returned to the
three-dimensional decomposition, but now in the spec-
tral domain. Pairwise communication is employed to
redistribute the data, and has proven to scale well in
our larger simulations. A demonstration of this is pro-
vided by the Blue Gene/Q sytems, where we have run
on up to ∼ 1.5 million MPI ranks (Habib et al. 2012).
As the grid size is increased on a given number of pro-
cessors, the communication efficiency (i.e., the fraction
of time spent communicating data between processors),
remains unchanged. This is an important validation of
our implementation design, as the communication cost
of the algorithm must not outpace the increase in local
computation performance when scaling up in size. Fur-
ther details of the parallel FFT implementation will be
presented elsewhere.

2.4. The Short-Range Force

The total force on a particle is given by the vector
sum of two components: the long-range force and the
short-range force. At distances greater than the force-
matching scale, only the long-range force is needed (at
these scales, the (filtered) PM calculation is an excel-
lent approximation to the desired Newtonian limit, see
Figure 3). At distances less than the force-matching
scale, rs, the short-range force is given by subtracting
the residual filtered grid force from the exact Newtonian
force.

To find the residual filtered PM force, we compute it
numerically using a pair of test particles (since in our
case no analytic expression is available), evaluating the
force at many different distances at a large number of
random orientations. The results are fit to an expression
that has the correct asymptotic behaviors at small and
large separation distances (Cf. Dubinski et al. 2004).
We used the particular form:

fgrid(r) =
1

r2
tanh(br) −

b

r

1

cosh2(br)

+ cr(1 + dr2) exp(−dr2)

+ e(1 + f r2 + gr4 + lr6) exp(−hr2), (8)

which, with b = 0.72, c = 0.01, d = 0.27, e = 0.0001,
f = 360, g = 100, h = 0.67, and l = 17, provides an
excellent match to the data from the test code (Figure 3),
with errors much below 0.1%. At very small distance
scales, the gravitational force must be softened, and this
can be implemented using Plummer or spline kernels
(see, e.g., Dehnen 2001).

The force expression, Eq. (8), is complex and to im-
plement faster force evaluations one can either employ
look-ups based on interpolation or a simpler polynomial
expression. The communication penalty of look-ups can
be quite high, whereas an extended dynamic range is
difficult to fit with sufficiently low-order polynomials.
In our case, the choice of a short matching scale, rs, en-
ables the use of a fifth-order polynomial approximation,
which can be vectorized for high performance.

Depending on the target architecture, HACC uses two
different short-range solvers, one based on a tree algo-
rithm, the other based on a direct particle-particle in-
teraction (P3M). Tree methods are employed on non-
accelerated systems, while both P3M and tree meth-
ods can be used on accelerated systems. HACC uses
an RCB tree in conjunction with a highly-tuned short-
range polynomial force kernel. (An oct-tree implemen-
tation also exists, but is not the current production ver-
sion.) The implementation of the RCB tree, although
not the force evaluation scheme, generally follows the
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Figure 5: Notional sketch of an RCB tree spatial domain splitting for a
2-D particle distribution, following Gafton and Rosswog (2011). The
cut-lines (planes in 3-D) go through the particle distribution center of
mass in a cell – rather than the median – and are perpendicular to the
longest cell side. The criterion for the maximal level of the tree depth
depends on the details of the computational architecture (see text).

discussion in Gafton and Rosswog (2011). Two core
principles underlie the high performance of the RCB
tree’s design (Habib et al. 2012).

Spatial Locality. The RCB tree is built by recursively
dividing particles into two groups. The dividing line is
placed at the center of mass coordinate perpendicular to
the longest side of the box (Figure 5). Once the line of
division is chosen, the particles are partitioned such that
particles in each group occupy disjoint memory buffers.
Local forces are then computed one leaf node at a time.
The net result is that the particle data exhibits a high
degree of spatial locality after the tree build; because
the computation of the short-range force on the parti-
cles in any given leaf node, by construction, deals with
particles only in nearby leaf nodes, the cache miss rate
during the force computation is very low.

Walk Minimization. In a traditional tree code, an in-
teraction list is built and evaluated for each particle.
While the interaction list size scales only logarithmi-
cally with the total number of particles (hence the over-
all O(N log N) complexity), the tree walk necessary to
build the interaction list is a relatively slow operation.
This is because it involves the evaluation of complex
conditional statements and requires “pointer chasing”
operations. A direct N2 force calculation scales poorly
as N grows, but for a small number of particles, a
thoughtfully-constructed kernel can still finish the com-
putation in a small number of cycles. The RCB tree
exploits our highly-tuned short-range force kernels to

decrease the overall force evaluation time by shifting
workload away from the slow tree-walking and into the
force kernel. Up to a point, doing this actually speeds
up the overall calculation: the time spent in the force
kernel goes up but the walk time decreases faster. Obvi-
ously, at some point this breaks down, but on many sys-
tems, tens or hundreds of particles can be in each leaf
node before the crossover is reached. We point out that
the force kernel is generally more efficient as the size of
the interaction list grows: the relative loop overhead is
smaller, and more of the computation can be done using
unrolled vectorized code.

In addition to the performance benefits of grouping
multiple particles in each leaf node, doing so also in-
creases the accuracy of the resulting force calculation:
The local force is dominated by nearby particles, and
as more particles are retained in each leaf node, more
of the force from those nearby particles is calculated
exactly. In highly-clustered regions (with very many
nearby particles), the accuracy can increase by several
orders of magnitude when keeping over 100 particles
per leaf node.

The P3M implementation within HACC follows the
standard method of building a chaining mesh to control
the number of particle-particle interactions (Hockney &
Eastwood 1988).

We defer further details regarding the architecture-
specific implementation of the short-range force to Sec-
tion 3, where the different alternatives are covered sep-
arately.

2.5. Time-Stepping

The time-stepping in HACC is based on the widely
employed symplectic scheme, as used, e.g., in the
IMPACT code (Qiang et al. 2000), the forerunner of
MC2 (see, e.g., Heitmann et al. 2005), the PM precursor
of HACC. The basic idea here is not to finite-difference
the equations of motion, but to view evolution as a sym-
plectic map on phase space. Symplectic integration in
HACC approximates the full evolution to second or-
der in the time-step by composing elementary maps us-
ing the Campbell-Baker-Hausdorff series expansion. In
PM mode, the elementary maps are the ‘stream’ and
‘kick’ maps M1 = exp(−tĤ1) and M2 = exp(−tĤ2)
corresponding to the free particle (kinetic) piece and
the one-particle effective potential in the Hamiltonian,
respectively. In the stream map, the particle position
is drifted using its known velocity, which remains un-
changed; in the kick map, the velocity is updated us-
ing the force evaluation, while the position remains
unchanged. A symmetric ‘split-operator’ symplectic
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step M1(t/2)M2(t)M1(t/2) is termed SKS (stream-kick-
stream); a KSK step is another way to implement a
second-order symplectic integrator. (In the presence of
explicitly time-dependent Hamiltonan pieces, the map
evaluations have to be implemented at the correct times
to maintain second-order accuracy.)

In the presence of both short and long-range forces,
we split the Hamiltonian into two parts, H1 = Hsr +

Hlr where Hsr contains the kinetic and particle-particle
force interaction (with an associated map Msr), whereas,
H2 = Hlr is just the long range force, corresponding to
the map Mlr . Since the long range force varies relatively
slowly, we construct a single time-step map by subcy-
cling Msr:

M f ull(t) = Mlr(t/2)(Msr(t/nc))
nc Mlr(t/2), (9)

the total map Msr being a usual second-order symplec-
tic integrator. This corresponds to a KSK step, where
the S is not an exact stream step as in the PM case, but
has enough Msr steps composed together to obtain the
required accuracy. For typical problems the number, nc,
of short time steps for each long time step will range
between 3-10, depending on accuracy requirements.

Because the late-time distribution of particles is
highly clustered, there can be a substantial advantage
in using different (synchronized) local time steps down
to the single-particle level. Although HACC is de-
signed for a regime where extreme dynamic range is not
needed, as in treating the innermost part of galaxy ha-
los or in tracking orbits around black holes – where this
advantage is most felt (e.g., Power et al. 2003) – the au-
tomatic density information available in the short-range
force solvers is used to enable multi-level time-stepping,
resulting in speed-ups by a factor of 2-3, with only small
effects on the accuracy. More on this topic can be found
in Section 3.

2.6. Code Units

HACC uses comoving coordinates for positions and
velocities. The actual internal representation of all vari-
ables is in the dimensionless form:

x ≡ x0x̃, t ≡ t̃/H0, ρ ≡ ρ̃ρb, (10)

where the fundamental scaling length, x0, is the length
of a single grid cell of the long-range force PM-solver,
L/(Ng − 1), where L is the box-size and Ng is the num-
ber of grid points in a single dimension, H0 is the
current value of the Hubble parameter, and the back-
ground mass density, ρb = 3H2

0Ω0/(8πGa3). HACC
uses powers of the scale factor, a(t)α, as the actual evo-
lution variable, with a nominal default value of α = 1;

time-stepping is performed using the variable y = aα,
d/dt̃ = (αyH/H0)d/dy.

2.7. Memory Management

Besides easy portability between different architec-
tures, another very important feature of HACC is its
highly optimized memory footprint. Pushing the sim-
ulation limits in large-scale structure formation prob-
lems means running simulations with as many particles
as possible, and this often implies running as close as
possible to the memory limit of the machine. As a re-
sult, memory fragmentation9 becomes a serious prob-
lem. To make matters worse, HACC is required to al-
locate and free different data structures during differ-
ent parts of each time step because there is not enough
available memory to hold all such structures at the same
time. Furthermore, many of these data structures, such
as the RCB tree used for the short-range force calcula-
tion, have sizes that change dynamically with each new
time step. This, combined with other allocations from
the MPI implementation, message printing, file I/O, etc.
with lifetimes that might outlast a time-step phase (e.g.
long-rage force computation, short-range force compu-
tation, in-situ analysis), is a recipe for fatal memory
fragmentation problems – problems that we actually en-
countered on the Blue Gene/Q systems.

To mitigate this difficulty we have implemented a
specialized pool allocator called Bigchunk. This alloca-
tor grabs a large chunk of memory, and then distributes
it to various other subsystems. During the first time
step, Bigchunk acts only as a wrapper of the system’s
memory allocator, except that it keeps track of the total
amount of memory used during each phase of the time
step. Before the second time step begins, Bigchunk al-
locates an amount of memory equal to the maximum
used during any phase of the previous time step plus
some safety factor. Subsequent allocations are satisfied
using memory from the ‘big chunk’, and all such mem-
ory is internally marked as free after the completion of
each time-step phase. This en-masse deallocation, the
only kind of deallocation supported by Bigchunk, al-
lows for an implementation that has minimal overhead,
and the time it takes to allocate memory from Bigchunk
is very small compared to the speed of the system al-
locator. Because the Bigchunk memory is not released
back to the system, memory fragmentation no longer fa-
tally affects the ability of the time-step phases to allocate
their necessarily-large data structures.

9Memory fragmentation refers to the condition where small allo-
cations dispersed throughout the memory space leave no large con-
tiguous chunks free, even though the total amount of free memory
may be large.

10



The persistent state information in the simulation is
carried by the particle attributes. While the number of
particles in each MPI rank’s (overloaded) spatial sub-
volume is similar, structure formation implies some
variance. Once the overload cache is filled, the (total)
number of particles on a rank is fixed until the cache
is emptied and refreshed, at which point the number of
particles on each rank can change. In order to avoid
memory fragmentation with persistent information we
must anticipate the maximum number of particles any
rank will need during the course of a simulation run and
allocate that amount of memory for particle information
at the start, before any other significant memory alloca-
tion occurs. We estimate the maximum number of par-
ticles by choosing a maximum representative volume
from which bulk motion could move all of the parti-
cles into a rank’s (overloaded) sub-volume and multiply
that volume by the average particle density. The actual
memory allocations are monitored during runtime, al-
lowing for adjustments to be made while the code is run-
ning. In practice for the sub-volumes with side lengths
that are at least several tens of Mpc this results in al-
locating memory for an additional skin of particles that
is 6-10 Mpc thick. HACC prints a memory diagnos-
tic at each time step to indicate the extrema of particle
memory usage across all ranks, and the amount of ex-
tra memory can be adjusted when restarting the code
if the initial estimate appears to be insufficient for later
times. In addition to the space required for the actual
particle information, we also allocate an array of inte-
gers to represent a permuted ordering of the particles
and a scratch array large enough to hold any single par-
ticle attribute. These enable out-of-place re-ordering of
the particle information one attribute at a time without
additional memory allocation.

2.8. I/O Strategy

A plurality of I/O strategies are needed for different
use cases, machine architectures, and data sizes because
no single I/O strategy works well under all of these con-
ditions. Our three main approaches are described below.

One file per process. Using one output file per pro-
cess (i.e. MPI rank) is the simplest I/O strategy, and
continues to provide the best write bandwidth compared
to any other strategy. Because every process writes into
a separate file, after file creation, there is no locking or
synchronization needed in between processes. Unfortu-
nately, while simple and portable, one file per process
only works for a modest number of processes (typically
less than 10,000). No file system can manage hundreds
of thousands of files that would result from checkpoint-
ing a large-scale run with one file per process. Addi-
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Figure 6: File schema for analysis output enables spatial queries of
particle data in a high-level, portable, self-describing format.

tionally, as a practical matter, managing hundreds of
thousands of files is cumbersome and error-prone. Fi-
nally, even when the number of files is reasonable, read-
ing the stored data back into a different number of pro-
cesses than used to write the data requires redistribution.
This happens when the output is used for analysis on a
smaller cluster (or machine partition), or for visualiza-
tion. In such cases, the required reshuffling of all of the
data in memory is equivalent to the aggregation done by
more complex collective I/O strategies and cancels out
the simplicity of the one file per process approach. For
improved scalability and flexibility, HACC supports the
following additional I/O strategies.

Many processes per file. The default I/O strategy
used by HACC, called GenericIO, partitions the pro-
cesses in a system-specific manner, and each partition
writes data into a custom self-describing file format.
Each process writes its data into a distinct region of the
file in order to reduce contention for file-system-level
page locks. Within the region assigned to each process,
each variable is written contiguously. On modern super-
computers, such as IBM Blue Gene and Cray X series
machines, dedicated I/O nodes execute special I/O for-
warding system software on behalf of a set of compute
nodes. For example, on IBM Blue Gene/Q systems, one
I/O node is assigned to 128 compute nodes. By writing
one file per I/O node, the total number of files is reduced
by at least the ratio of compute nodes to I/O nodes, and
a high percentage of the peak available bandwidth can
be captured by the reading and writing processes. By
partitioning the processes by I/O-node assignment and
providing each process with a disjoint data region, we
are taking advantage of the technique successfully used
by the GLEAN I/O library (Vishwanath et al. 2011) on
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the Blue Gene/P and Blue Gene/Q systems. The I/O
implementation can use MPI I/O, in either collective or
non-collective mode, or (non-collective) POSIX-level
I/O routines.

Importantly, 64-bit cyclic-redundancy-check (CRC)
codes are computed for each variable for each rank, and
this provides a way to validate data integrity. This pro-
tects against corruption that occurs while the data is
stored on disk, while files are being transferred in be-
tween systems, and while being transmitted within the
storage subsystem(s). During a recent run which gen-
erated 100 TB of checkpoint files, a single error in a
single variable from one writing process was detected
during one checkpoint-reading process, and we were
able to roll-back to a previous checkpoint and continue
the simulation with valid data. Furthermore, over the
past two years, CRC validation has detected corrupted
data from malfunctioning memory hardware on storage
servers, misconfigured RAID controllers and bugs in
(or miscompiled) compression libraries. The probabil-
ity of seeing corrupt data from any of these conditions is
small (even while they exist), and overall, modern stor-
age subsystems are highly reliable, but when writing
and reading many petabytes of data at many facilities
the probability of experiencing faults is still significant.
The CRC64 code is in the process of being transformed
into an open-source project10.

An example of GenericIO performance under pro-
duction conditions on the Blue Gene/Q system Mira is
given in Table 1. In tests, I/O performance very close to
the peak achievable has been recorded. Under produc-
tion conditions, we still achieve about two-thirds of the
peak performance.

A single file using parallel netCDF. When peak I/O
performance is not required, and the system’s MPI I/O
implementation can deliver acceptable performance, we
can make use of a parallel-netCDF-based I/O imple-
mentation (Li et al. 2003). The netCDF format is used
by simulation codes from many different science do-
mains, and readers for netCDF have been integrated
with many visualization and analysis tools. Because
netCDF has an established user community, and will
likely be supported into the foreseable future, writing
data into a netCDF-based format should make distribut-
ing data generated by HACC to other outside groups
easier than if only custom file formats were supported.

The file schema that we developed for the parallel
netCDF format is shown in Figure 6. As the figure
shows, particles are organized and indexed according to

10The library is available at http://trac.alcf.anl.gov/projects/hpcrc64/.

Table 1: GenericIO Performance (production runs on IBM Blue
Gene/Q)

No. Par-
ticles

No. Pro-
cesses

File size
(GiB)

Write
time (s)

Write
Band-
width
(GiB/s)

10243 512 43.8 22.0 1.90
32003 16384 1332.4 99.0 12.88
102403 262144 43821.6 380.5 109.9

the spatial subdomains (blocks) of the simulation, one
block per process. The spatial extents of each block are
also indexed.

Currently, three modes of reading the parallel netCDF
files are supported. First, given some number of pro-
cesses that need not be the same as the number of
blocks, particles can be redistributed uniformly among
the new number of processes while being read collec-
tively. Second, the particles in a single block can be re-
trieved given the block ID. Third, particles in a desired
bounding box can be retrieved. The queried bounding
box need not match the extents of any one block and
particles overlapping several blocks may be retrieved in
this manner.

The performance for writing the parallel netCDF out-
put is shown in Table 2. These tests were run on Hop-
per (Cray XE6) at the National Energy Research Sci-
entific Computing Center (NERSC) with a Lustre file
system. Because the file system is shared by all running
jobs, performance results will vary due to resource con-
tention; the values in Table 2 are the means of four runs
for each configuration.

To put these results in perspective, consider the last
row of Table 2. The peak performance expected for
the number of object storage targets (OSTs, 128 in
this case) is approximately 26.7 GiB/s (1 GiB = 230 =

1,073,741,824 bytes). This value represents ideal con-
ditions of writing large amounts of data to one file per
OST. In contrast, our strategy uses one shared file with
collective I/O aggregation and a high-level format with
index data in addition to raw particle arrays. Even so,
we achieve 56% of the peak ideal bandwidth.

3. Short-Range Force: Architecture Specific Imple-

mentations

In this section we go over the choice of algorithms
deployed as a function of nodal architecture, as well as
the corresponding optimizations implemented so far –
performance optimization is a continuous process.
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Table 2: Parallel NetCDF Performance (test runs on Cray XE6)

No. Par-
ticles

No. Pro-
cesses

File size
(GiB)

Write
time (s)

Write
Band-
width
(GiB/s)

5123 64 4.6 3.54 1.30
10243 512 36 14.34 2.51
20483 4096 288 19.10 15.1

3.1. Non-Accelerated Systems: The RCB Tree

In order to evaluate the short-range force on non-
accelerated systems, such as the Blue Gene/Q, HACC
uses an RCB tree in conjunction with a highly-tuned
short-range polynomial force kernel, as has been dis-
cussed in Section 2.4.

An important consideration in this implementation is
the tree-node partitioning step, which is the most expen-
sive part of the tree build. The particle data is stored as
a collection of arrays – the so-called structure-of-arrays
format. There are three arrays for the three spatial co-
ordinates, three arrays for the velocity components, in
addition to arrays for mass, a particle identifier, etc. Our
implementation in HACC divides the partitioning oper-
ation into three phases. The first phase loops over the
coordinate being used to divide the particles, recording
which particles will need to be swapped. Next, these
prerecorded swapping operations are performed on six
of the arrays. The remaining arrays are identically han-
dled in the third phase. Dividing the work in this way
allows the Blue Gene/Q hardware prefetcher to effec-
tively hide the memory transfer latency during the par-
ticle partitioning operation and reduces expensive read-
after-write dependencies.

The premise underlying the multilevel timestepping
scheme (Section 2.5) is that particles in higher density
regions will require finer short-range time steps. A local
density estimate can be trivially extracted from the same
RCB tree constructed for evaluating the short-range in-
terparticle forces. Each “leaf node” in the RCB tree
holds some number of particles, the bounding box for
those particles has already been computed, and a con-
stant density estimate is used for all particles within the
leaf node’s bounding box. Because the bounding box,
and thus the density estimate, changes as the particles
are moved, the timestepping level assigned to each leaf
node is fixed when the tree is constructed. This im-
plies that, after particles have been moved, the leaf-node
bounding boxes may overlap. The force-evaluation al-
gorithm is insensitive to these small overlaps, and the
effect on the efficiency of the force calculation is appar-
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Figure 7: Comparison of the multi-level time stepper with different
values for d [see Eq. (11)] versus 5 sub-cycle steps for each particle.
Shown is the ratio of the final power spectra for a small test problem
(256 h−1Mpc, 2563 particles), going out to the particle Nyquist wave
number. The multi-level time step approach leads to a speed-up of the
full simulation by a factor of ∼2, with only a negligible change in the
error.

ently negligible.

In between consecutive long-range force calcula-
tions, each particle is operated on by the kick (velocity
update) and stream (position update) operators of the
short-range force. If a particle, based on the density of
its leaf node at the beginning of the subcycle, is evolved
using n kicks, then it needs to be acted on by 2n stream
operators each evolving the particle by dt/2n. To en-
sure time synchronization, these stream operators are
further split such that all particles are acted on by the
same number of stream operators. The number of kicks
used for particles in a leaf node is determined by:

l =

⌊

ρ

ρ0

⌋

/d + 1, (11)

where d is an adjustable linear scaling parameter. In ad-
dition, the maximum level is capped by an additional
user-provided parameter. We show examples of accu-
racy control in the multi-level time stepping scheme in
Figures 7 – 11.

In Figure 7, we compare the power spectrum obtained
from a simulation with 5 sub-cycle steps for each par-
ticle with a result that was obtained in the following
way: 5 sub-cycles per step per particle are used until
z = 1; since the clustering at that point is still modest,
this point is reached relatively quickly. After z = 1 we
evolve each particle with at least 2 sub-cycles and al-
low – depending on the density – two more levels of
sub-cycling. In this test, setting the scaling parameter
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d to 20 or 10 leads to accurate results, better than 0.2%
out to kNy and better than 0.5% at twice kNy (the test
case used 2563 particles in a 256 h−1Mpc volume with
500 PM steps.) In precision cosmology applications,
one desires better than 1% accuracy and this is attained
at wavenumbers less than kNy/2 (Heitmann et al. 2010).
Consequently, the current error limits are comfortably
wihtin the required bounds. Using the multi-level step-
ping can speed up the simulation by a factor of two
(changing d in the range shown leaves the performance
unaffected). We have carried out a suite of convergence
tests, concluding that the setting with d = 20 satisfies
our accuracy requirements.

At much smaller length scales, the power spectrum
test above can be augmented by checking the stability
of small scale structures in the halos as the adaptive
time-stepping parameters are varied. As typical exam-
ples thereof, we show results for the largest and second-
largest halos (identified using a ‘friends-of-friends’ or
FOF algorithm) in the same simulation discussed above
in Figures 8 – 11. The halo density field is com-
puted via a tessellation-based method in three dimen-
sions and then projected onto a two-dimensional grid;
details of this implementation will be presented else-
where (Rangel et al. 2014). The angle-averaged (spher-
ical) density profiles are also shown in Figures 9 and
11. As can be seen from these results, aside from triv-
ial differences due to the FOF linking noise, the halo
substructure depends relatively mildly on the choice of
the values of the scaling parameter, d, over the chosen
ranges used.

Aside from optimizing the number of force evalua-
tions, one also has to minimize the time spent in evalu-
ating the force kernel. This is a function of the design of
the compute nodes. Here we provide a description of the
Blue Gene/Q-specific short-range force kernel and how
it is optimized. (Very similar implementations were car-
ried out for Cray XE6 and XC30 systems.) As men-
tioned earlier, the compactness of the short-range inter-
action (Cf. Section 2.3), allows the kernel to be repre-
sented as

fS R(s) = (s + ε)−3/2 − fgrid(s) (12)

where s = r · r, fgrid(s) is a 5-th order polynomial in
s, and ε is a short-distance cutoff (Plummer softening).
This computation must be vectorized to attain high per-
formance; we do this by computing the force for every
neighbor of each particle at once. The list of neighbors
is generated such that each coordinate and the mass of
each neighboring particle is pre-generated into a con-
tiguous array. This guarantees that 1) every particle has

Figure 8: The projected density field from a Delaunay tessellation-
based density estimator of the largest (FOF, link length, b = 0.2) halo
at z = 0 for the same run as in Figure 7, with different values for d.
Minor variations in the outskirts of the halos are due to FOF linking
‘noise’.

an independent list of particles and can be processed
within a separate thread; and 2) every neighbor list can
be accessed with vector memory operations, because
contiguity and alignment restrictions are taken care of
in advance. Every particle on a leaf node shares the
interaction list, therefore all particles have lists of the
same size, and the computational threads are automati-
cally balanced.

The filtering of s, i.e., checking the short-range con-
dition, can be processed during the generation of the
neighbor list or during the force evaluation itself; since
the condition is likely violated only in a number of “cor-
ner” cases, it is advantageous to include it into the force
evaluation in a form where ternary operators can be
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Figure 9: The density profile for the halo depicted in Figure 8 at cor-
responding values of the scaling parameter, d.

Figure 10: The same as in Figure 8 for the second largest halo.

combined to remove the need of storing a value during
the force computation. Each ternary operator can be im-
plemented with the help of the fsel instruction, which
also has a vector equivalent. Even though these alter-
ations introduce an (insignificant) increase in instruction
count, the entire force evaluation routine becomes fully
vectorizable.

There is significant flexibility in choosing the num-
ber of MPI ranks versus the number of threads on an
individual Blue Gene/Q node. Because of the excellent
performance of the memory sub-system, a large number
of OpenMP threads – up to 32 per node – can be run to
optimize performance. Concurrency in the short-range
force evaluation is exposed by, first, building a work
queue of leaf-node-vs-tree interactions, and second, ex-
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Figure 11: The same as Figure 9 for the second-largest halo.

ecuting those interactions in parallel using OpenMP’s
dynamic scheduling capability. Each work item incor-
porates both the interaction-list building and the force
calculation itself for each leaf node’s particles.

To further increase the amount of parallel work,
HACC builds multiple RCB trees per rank. First, the
particles are sorted into fixed bins, where the linear size
of each bin is roughly the scale of the short-range force.
An RCB tree is then constructed within each bin, and
because this process in each bin is independent of all
other bins, this is done in parallel. This parallelization
of the tree-building process provides a significant per-
formance boost to the overall force computation. When
the force on the particles in each leaf node is computed,
not only must the parent tree be searched, but so must
the other 26 neighboring trees. Because of the limited
range of the short-range force, only nearest neighbors
need to be considered. While searching many neighbor-
ing trees adds extra expense, the trees are individually
not as deep, and so the resulting walks are less expen-
sive. Also, because we distribute ‘(leaf node, neighbor-
ing tree)’ pairs among the threads, this scheme also in-
creases the amount of available parallelism post-build
(which helps with thread-level load balancing). All told,
using multiple trees in this fashion provides a significant
performance advantage over using one large tree for the
entire domain.

3.2. Cell-Accelerated Systems

The first version of HACC was originally written for
the IBM PowerXCell 8i-accelerated hardware of Road-
runner, the first machine to break the Petaflop barrier.
This architecture posed three critical challenges, all of

15



which continue to be faced in one way or the other on all
accelerated systems. A more detailed description of the
Cell implementation and the Roadrunner architecture is
given in Habib et al. (2009). (See also Swaminarayan
2013.)

The three challenges for a Roadrunner-style architec-
ture are as follows. (i) Memory Balance. The machine
architecture (Figure 12) has a top layer of conventional
multi-core processors (in this case, two dual-core AMD
Opterons) to which are attached IBM PowerXCell 8i
Cell Broadband Engines (Cell BEs) via an eight-lane
PCI-E bus. The relative performance of the Opterons
is small compared to that of the Cell BEs, by roughly a
factor of 1:20, but they carry half the memory and pos-
sess access to a communication fabric that is balanced
to their level of computational performance. For large-
scale N-body codes, memory is a key limiting factor,
therefore the code design must make the best use pos-
sible of the CPU layer (this situation continues in cur-
rent and future accelerated systems, as discussed fur-
ther below). (ii) Communication Balance. The Cell BEs
dominate the computational resource, but are starved for
communication, due to the relatively slow PCI-E link
to the host CPU (Figure 12). From the point of view
of the compute/communication ratio, such a machine is
50-100 times out of balance. We note that this situation
also continues to hold in the current generation of accel-
erated systems such as CPU/GPU or CPU/Xeon Phi ma-
chines: The computational approach taken must there-
fore maximize computation for a given amount of data
motion. (iii) Multiple Programming Models. Acceler-
ated systems have a multi-layer programming model.
On the CPU level, standard languages and interfaces can
be used (HACC uses C/C++/MPI/OpenMP) but the ac-
celerator units often have a hardware-specific program-
ming paradigm. (Although attempts to overcome this
gap now exist, the results – in actual practice – are not
yet compelling.) For this reason, it is desirable to keep
the code on the accelerator (the Cell BE in this case) as
simple as possible and avoid elaborate coding. In addi-
tion, it also proved advantageous to keep the data struc-
tures and communication patterns on the Cell BE as
straightforward as possible to optimize computational
efficiency.

With these challenges in mind, HACC is matched to
the machine architecture as follows: At the first level
of code organization, the medium/long range force is
handled by the FFT-based method that operates at the
Opteron layer, as for all other architectures. At this
layer, only grid information is stored and manipulated
(except when carrying out analysis steps). Particles live
only at the Cell layer. There is a rough memory balance

Figure 12: Roadrunner architecture schematic: The accelerator units
(IBM Cell BEs) are shown in pink, the CPUs (AMD Opterons) in
blue, and the (fat tree) interconnect in green. Note that communication
across the Cell BE layer has to proceed indirectly, passing through the
CPU layer.

between the grid and particle data, matching well to the
memory organization on the machine, and combating
the first challenge mentioned above. The particle-grid
deposition and grid-particle interpolation steps are per-
formed at the Cell layer with only grid information pass-
ing between the two layers. This compensates for the
limited bandwidth available between the Cell BEs and
the Opterons. The local force calculations reside at the
Cell level. This addresses the second challenge, as aided
by the particle overloading discussed in Section 2.2. Be-
cause implementing complicated data structures at the
Cell level is difficult, and conditionals are best avoided,
our choice for the local force solve is a direct particle-
particle interaction. To make this interaction more ef-
ficient, we use a chaining mesh to control the number
of interactions (see, e.g., Hockney & Eastwood 1988).
This leads to an efficient, hardware-accelerated P3M al-
gorithm, thereby overcoming the third challenge (Pope
et al. 2010).

3.3. GPU-Accelerated Systems

As already discussed above, some of the challenges
for GPU-accelerated systems are very similar in spirit
to those for Cell-accelerated systems. The low-level
GPU programming model (OpenCL or CUDA) adds
another layer of complexity and the compute to com-
munication balance is heavily skewed towards comput-
ing. One major difference between the two architectures
is the memory balance: While on the Cell-accelerated
systems the Cell layer has the same amount of mem-
ory as the CPU layer, this is generally not the case for
CPU/GPU systems. For example, the Cray XK7 sys-
tem, Titan, at Oak Ridge, has 32 GB of host-side mem-
ory on a single node, with only 6 GB of GPU memory.
This adds yet another challenge, that of memory imbal-
ance. We have overcome this by partitioning the local
data into smaller overlapping blocks, which can fit on
device memory. Very similar in spirit to particle over-
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Figure 13: Figure illustrating the partitioning of alive and dead par-
ticles. The outside (red) slabs of data are solely streamed, and the
yellow and green slabs calculate the full short range (SKS) force. In
analogy, the red and yellow slabs can be thought of as the overloaded
‘dead’ particles, and the green slabs are ‘alive’, which are correctly
updated. The finest partitioning is achieved in 5 slab blocks, where
there is only one (green) corrected slab updated.

loading, the boundaries of the partitions are duplicated,
such that each block can be evolved independently. We
emphasize again that the long/medium range calcula-
tions on this architecture remain unchanged, and only
the short-range force kernel needs to be optimized.

The data partitioning is illustrated in Figure 13. We
utilize a two-dimensional decomposition of data blocks,
which are in turn composed of slabs that are spa-
tially separated by the extent of the short-range force
– roughly 3 grid cells (see Figure 3). In complete anal-
ogy to particle overloading, the data blocks are com-
posed of ‘active’ particles (green) that are updated uti-
lizing the ‘passive’ particles (yellow and red) from the
boundary. The (red) edge slabs are solely streamed, as
opposed to performing the full SKS time stepping de-
scribed in Section 2.5. This mediates the error inflow
on these passive particles, as they can only “see” the in-
terior particles within the domain. We note that since
the data has been decomposed into smaller independent
work items, these blocks can now be communicated to
any nodes that have the available resources to handle
the extra workload. Hence, this scheme provides for a
straightforward load-balancing algorithm by construc-
tion. Details of the error analysis and load balancing
schemes will be described in an upcoming paper de-
voted to the GPU implementation of HACC (Frontiere
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Figure 14: Ratio of the power spectra from four different runs with
respect to the HACC GPU implementation, time-stepping conditions
for all HACC versions held fixed. The comparison shows the Blue
Gene/Q PPTreePM version (red solid), the X86 TreePM version run
on a Cray XE6 (green dashed), and the GPU P3M version (blue short-
dashed). We also show the comparison with a GADGET-2 run. The
agreement is very good – the TreePM runs agree with the GPU version
of HACC to better than 0.1% up to the particle Nyquist wavenumber.
The level of agreement with Gadget-2 is noteworthy because it is a
completely independent code.

et al., 2014).

4. Code Verification and Testing

HACC has been subjected to a large number of stan-
dard convergence tests (second-order time-stepping,
halo profiles, power spectrum measurements, etc.). In
this section we focus mostly on a subset of HACC test
results using the setup of the code comparison project,
originally carried out in Heitmann et al. (2005). In that
work, a set of initial conditions was created for different
problems (mainly different volumes) and a number of
cosmological codes were run on those, all at their nomi-
nal default settings. The final outputs were compared by
measuring a variety of statistics, including matter fluc-
tuation power spectra, halo positions and profiles, and
halo mass functions. The initial conditions and final re-
sults from the tests are publicly available and have been
used subsequently by other groups for code verification,
e.g for Gadget-2 (Springel, 2005), and most recently for
Nyx (Almgren et al., 2013). We will also show some re-
sults from recently carried out large-scale simulations.

We first restrict attention to the larger volume simu-
lation (256 h−1Mpc) and compare HACC results with
those found for Gadget-2, as published in Springel
(2005). While the simulation is only modest in size
(2563 particles) it does present a relatively sensitive
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Figure 15: Comparison of halo particles between Gadget-2 (left) and three HACC implementations, the PPTreePM version (Cray XE6), the GPU
version, and the Cell version. The smallest halos shown consist of 100 particles (dark blue), the largest halos have up to ∼19,000 particles (red).
Green colors show halos in the few thousand particle range. If a dark blue halo is missing in one of the images, this is due to the mass cut at 100
particles (the halo has fallen below a threshold, but actually exists). The linking length in the comparison was chosen to be b = 0.168. The very
good level of overall agreement is clearly evident.

Table 3: Comparison of a sample of halo statistics from the code comparison runs, as extracted from the ParaView analysis. The total number of
halos is Nh, the number of particles, Np, the FOF link length, b, and the velocity dispersion is denoted by σv.

Gadget-2 RCBTreePM P3M-GPU P3M-Cell

Nh, b = 0.2 9707 9638 9636 9634
Nh, b = 0.168 8817 8734 8732 8728

Np, most massive halo, b = 0.2 22,587 21,802 22,114 22,240
Np, most massive halo, b = 0.168 18,728 18,656 19,047 19,088

range of σv [km/s], b = 0.2 [132.4, 1109.9] [134.4, 1126.2] [134.2, 1101.3] [133.2, 1101.16]
range of σv [km/s], b = 0.168 [133.5, 1144.5] [145.5, 1141.3] [151.3, 1128.6] [143.7, 1146.7]

challenge and is capable of detecting subtle errors in
the code under test. Not only are statistical measures
such as the power spectrum robust indicators of code
accuracy, but visual inspection of the particle data it-
self presents a quick qualitative check on code behavior
and correctness; it is particularly valuable in identifying
problems at early stages of code development. We use
ParaView for this purpose (Woodring et al. 2011).

The code comparison test was run with a force reso-
lution of ∼ 7 h−1kpc, very similar to what was used in
the Gadget-2 simulation. We compare results from dif-
ferent HACC versions (PPTreePM on the Blue Gene/Q
and Hopper, P3M on a Cell-accelerated and a GPU-
accelerated system) with those from Gadget-2. The
result for the matter power spectrum is shown in Fig-

ure 14, where, as in Figure 7, we show results up to kNy.
All the code results are very close to each other (note
the scale on the y-axis). The agreement over the full
k-range is better than 0.5%, including Gadget-2. Con-
sidering the different implementations of force solvers
and time steppers, this closeness is very reassuring, par-
ticularly as no effort was made to fine-tune the level
of agreement. The TreePM versions of HACC and the
CPU/GPU version agree to better than a tenth of a per-
cent.

Next we present results from a more qualitative, but
nevertheless, very detailed comparison, shown in Fig-
ure 15. In this test, we identify all particles that belong
to halos with at least 100 particles per halo. This is done
within ParaView, using an FOF halo finder with linking

18



1e 13

1e 14
Gadget-2

RCBTreePM
GPU
Cell

1e 13

1e 14

M
as

s[
M

O
h
]

0.1 1
r[Mpc h]

1e 13

1e 14

.

Figure 16: Comparison of the mass profiles of the three biggest halos
in the test simulation, showing close agreement within the binning
shot noise scatter (larger at smaller radii).

length b = 0.168. The particles are colored with respect
to halo mass. The most massive halo in the image (col-
ored in red) has a mass of ∼ 1.6 · 1015 h−1M". While
there are differences in the images – as is to be expected
– the overall agreement is striking. Almost all small ha-
los exist in all images (the ones that are missing are just
below the cut of 100 particles, but they do actually exist)
and many of the fine details within the halo structures of
the larger halos are well-matched.

The mass profiles of the three largest halos in the
simulation are shown in Figure 16. The binning shot
noise dominates the comparison at small radii, but be-
yond that the agreement is very good. Other quantita-
tive halo comparison statistics are given in Table 3, to
further illustrate the close match of the results from all
of the different algorithms.

We illustrate the dynamic range and accuracy of the
HACC approach by comparing results for the power
spectrum from the ‘Outer Rim’ and ‘Q Continuum’ runs
in Figure 17. The Q Continuum run on Titan had ∼ 550
billion particles, a 1.3 Gpc box, with a mass resolution,
mp ∼ 108 M", and the Outer Rim run on Mira had ∼ 1.1
trillion particles, a 4.225 Gpc box, with a mass resolu-
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Figure 17: Matter fluctuation power spectra from the Outer Rim and Q
Continuum simulations at z = 0.26. The solid curve is the prediction
from the extended Coyote emulator of Heitmann et al. (2014). The
agreement across the two runs is at the fraction of a percent level,
while the agreement with the emulator is at the 2% level, which is the
estimated emulator accuracy.

tion, mp ∼ 109 M". The numerical results (run with dif-
ferent short-range force algorithms) agree to fractions of
a percent, and agree at the 2% level with the (extended)
Coyote emulator predictions of Heitmann et al. (2014),
which is at the level of accuracy expected from the em-
ulator.

Finally, we show results for the halo mass function at
very large simulation scales illustrating excellent agree-
ment across different sized simulations carried out us-
ing different short-range force implementations. Fig-
ure 18 shows the (FOF, b = 0.168) halo mass function
at z = 1 resulting from three different simulations with
the same cosmology, (i) a run from the Mira Universe
suite (∼ 30 billion particles, 2.1 Gpc box, mass resolu-
tion, mp ∼ 1010 M"), (ii) the Q Continuum run on Titan,
and (iii) the Outer Rim run on Mira.

5. In-situ Analysis Tools

An entire suite of in situ analysis tools (CosmoTools)
for HACC is under continuous development, driven by
evolving science goals; CosmoTools exists in both in
situ and stand-alone versions (to be used for off-line
processing). The overall structure of the in situ frame-
work is shown in Figure 19. Output from the analysis
is available either at run time or for post-processing. In
the former case, a ParaView server can be launched and
connected to the simulation through a tool called Cata-
lyst. In the latter case, results of the in situ analysis are
written to a parallel file system and later retrieved.
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Several standard tools for the analysis of cosmolog-
ical simulations are part of the in situ framework, such
as halo finders (Woodring et al. 2011) and merger tree
constructors. The first tool to be part of this framework
that works on the full particle data to produce field infor-
mation is a parallel Voronoi tessellation that computes
a polyhedral mesh whose cell volume is inversely pro-
portional to the distance between particles. Such a mesh
representation acts as a continuous density field that af-
fords accurate sampling of both high- and low-density

Figure 19: The in situ analysis framework provides the ability to ap-
ply various analysis tools and methods, e.g., halo finders, multistream
diagnostics, feature tracking (halo merger trees), and Voronoi tessel-
lation, and connects to run-time or postprocessing visualization tools,
all while the simulation is running.

regions. Connected components of cells above or be-
low a certain density can also approximate large-scale
structures. Two important criteria for in situ analysis fil-
ters are that they should scale similarly as the simulation
and have minimal memory overhead. The parallel tes-
sellation approach meets these criteria; full details are
in Peterka et al. (2012). The various tools can be turned
on through the configuration file for HACC, and the fre-
quency of their execution is also adjustable.
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6. Selected Performance Results

HACC runs on a variety of supercomputing platforms
and has scaled to the maximum size of some of the
fastest machines in the world, including Roadrunner at
Los Alamos, Sequoia at Livermore, Titan at Oak Ridge,
Mira at Argonne, and Hopper at NERSC. We have car-
ried out detailed scaling and performance studies on the
Blue Gene/Q systems (Habib et al. 2012) and on Titan;
a sample of our results is presented below.

For both systems, we carried out weak and strong
scaling tests. For the weak scaling tests we fix a phys-
ical volume and number of particles per node. When
scaling up to more nodes, the volume and particle load-
ing therefore increases, while the mass resolution stays
constant. The wall-clock time for a run should hence
stay constant if the code scales or, equivalently, the time
to solution per particle per step should decrease. The
absolute performance measured in TFlops per seconds
will rise while the percentage per peak will stay con-
stant. For our weak scaling tests, the particle mass is
∼ 5 · 1010M" and the force resolution, 6 kpc. All simu-
lations are for a ΛCDM model. Simulations of cosmo-
logical surveys focus on large problem sizes, therefore
the weak scaling properties are of primary interest.

For the weak scaling test on the Blue Gene/Q
systems, we ran with 2 million particles in a
∼(100 h−1Mpc)3 volume per core, using a typical par-
ticle loading in actual large-scale simulations on these
systems. Tests with 4 million particles per core pro-
duce very similar results. As demonstrated in Figure 20
(right panel), weak scaling is ideal up to 1,572,864 cores
(96 racks, all of Sequioa), where HACC attains a peak
performance of 13.94 PFlops and parallel efficiency of
90%. The largest test simulation on Sequoia evolved
∼3.6 trillion particles and a (very high accuracy) parti-
cle substep took ∼ 0.06 ns for the full high-resolution
code. The scaling results were obtained by averaging
over 50 sub-cycles.

On Titan we ran with 32 million particles per node in
a fixed (nodal) physical volume of (256 h−1Mpc)3, rep-
resentative of the particle loading in actual large-scale
runs (the GPU version was run with one MPI rank per
node). The results are shown in the left panel of Fig-
ure 20. In addition (not shown) we have timing results
for a 1.1 trillion particle run, where we have kept the
volume per node the same but increased the number of
particles per node by a factor of two to 64.5 million. As
for the Blue Gene/Q systems, HACC weak-scales es-
sentially perfectly up to the full machine.

For the strong scaling tests, we chose the same prob-
lem size on both systems, a (1000 h−1Mpc)3 volume

with 10243 particles. This is a rather small problem and
strong scaling is expected to break down at some point.
The results for both systems are shown in Figure 20 –
the strong scaling regime is remarkably large. On the
Blue Gene/Q system, we demonstrate strong scaling be-
tween 512 and 16384 cores (with somewhat degraded
performance at the largest scale). For Titan, we increase
the number of nodes for this problem from 32 to 8192,
almost half of the machine. As can be seen in the left
panel in Figure 20, strong scaling only starts degrading
after 2048 nodes. (The results for Titan have been im-
proved since these earlier tests, they will be reported in
Frontiere et al. 2014). The significance of the strong
scaling tests is in showing how well a code can perform
as the effective memory per core reduces – HACC can
run very effectively at values as low as 100MB/core,
which is roughly equivalent to the memory per core
available in next-generation many-core systems.

7. Conclusion and Outlook

The impressive scale and quality of data from sky
survey observations requires a correspondingly strong
response in theory and modeling. It is widely recog-
nized that large-scale computing must play an essential
role in shaping this response, not only in interpreting
the data, but also in optimizing survey strategies and
validating data and analysis pipelines. The HACC sim-
ulation framework is designed to produce synthetic cat-
alogs and to run large campaigns for precision predic-
tions of cosmological observables.

The evolution of HACC continues to proceed in two
broad directions: (i) the further development of algo-
rithms (and their optimization) for future-looking super-
computing architectures, including areas such as power
management, fault-tolerance, exploitation of local non-
volatile random-access memory (NVRAM) and investi-
gation of alternative programming models, and (ii) ad-
dition of new physics capabilities in both modeling and
simulation (e.g., gas physics, feedback processes, etc.)
and in the analysis part of the framework (e.g., increased
sophistication in semi-analytic galaxy modeling, and an
associated validation program).

The use of HACC for large-scale simulation cam-
paigns covers applications such as those required to
construct cosmological emulators (Heitmann et al.
2006; Habib et al. 2007; Lawrence et al. 2010; Kwan et
al. 2013a,b; Heitmann et al. 2014), to determine covari-
ance matrices (Sunayama et al. 2014), to help optimize
survey design and test associated pipelines with syn-
thetic catalogs (White et al. 2014), and, finally, to carry
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out MCMC-based parameter estimation across multi-
ple cosmological probes (Higdon et al. 2008). A ma-
jor component of the future use of HACC is therefore
related to the production and exploitation of large sim-
ulation databases, including public access and analysis;
work in this area is in progress with a number of collab-
orators.
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